Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Twin-roots of words and their properties

Lila Kari, Kalpana Mahalingam¹, Shinnosuke Seki*

Department of Computer Science, The University of Western Ontario, London, Ontario, Canada, N6A 5B7

ARTICLE INFO

Keywords: f-symmetric words Twin-roots Morphic and antimorphic involutions Primitive roots

ABSTRACT

In this paper we generalize the notion of an *ι*-symmetric word, from an antimorphic involution, to an arbitrary involution *ι* as follows: a nonempty word *w* is said to be *ι*-symmetric if $w = \alpha\beta = \iota(\beta\alpha)$ for some words α , β . We propose the notion of *ι*-twin-roots (*x*, *y*) of an *ι*-symmetric word *w*. We prove the existence and uniqueness of the *ι*-twin-roots of an *ι*-symmetric word, and show that the left factor α and right factor β of any factorization of *w* as $w = \alpha\beta = \iota(\beta\alpha)$, can be expressed in terms of the *ι*-twin-roots of *w*. In addition, we show that for any involution *ι*, the catenation of the *ι*-twin-roots of a word, for *ι* being a morphic or antimorphic involution.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Periodicity, primitivity, overlaps, and repetitions of factors play an important role in combinatorics of words, and have been the subject of extensive studies, [8,12]. Recently, a new interpretation of these notions has emerged, motivated by information encoding in DNA computing.

DNA computing is based on the idea that data can be encoded as biomolecules, [1], e.g., DNA strands, and molecular biology tools can be used to transform this data to perform, e.g., arithmetic and logic operations. DNA (deoxyribonucleic acid) is a linear chain made up of four different types of nucleotides, each consisting of a base (Adenine, Cytosine, Guanine, or Thymine) and a sugar-phosphate unit. The sugar-phosphate units are linked together by covalent bonds to form the backbone of the DNA single strand. Since nucleotides may differ only by their bases, a DNA strand can be viewed as simply a word over the four-letter alphabet {A, C, G, T}. A DNA single strand has an orientation, with one end known as the 5' end, and the other as the 3' end, based on their chemical properties. By convention, a word over the DNA alphabet represents the corresponding DNA single strand in the 5' to 3' orientation, i.e., the word GGTTTTT stands for the DNA single strand 5'-GGTTTTT-3'. A crucial feature of DNA single strands is their Watson–Crick complementarity: A is complementary to T, G is complementary to C, and two complementary DNA single strands with opposite orientation will bind to each other by hydrogen bonds between their individual bases to form a stable DNA double strand with the backbones at the outside and the bound pairs of bases lying at the inside.

Thus, in the context of DNA computing, a word u encodes the same information as its complement $\theta(u)$, where θ denotes the Watson–Crick complementarity function, or its mathematical formalization as an arbitrary antimorphic involution. This special feature of DNA-encoded information led to new interpretations of the concepts of repetitions and periodicity in words, wherein u and $\theta(u)$ were considered to encode the same information. For example, [4] proposed the notion of θ -primitive words for an antimorphic involution θ : a nonempty word w is θ -primitive iff it cannot be written in the form $w = u_1u_2 \dots u_n$ where $u_i \in \{u, \theta(u)\}, n \ge 2$. Initial results concerning this special class of primitive words are promising and include, e.g., an extension, [4], of the Fine-and-Wilf's theorem [5].

¹ Current address: Department of Mathematics, Indian Institute of Technology, Madras 600042, India.

0304-3975/\$ – see front matter Crown Copyright @ 2009 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2009.02.032

^{*} Corresponding author. Tel.: +1 519 661 2111; fax: +1 519 661 3515.

E-mail addresses: lila@csd.uwo.ca (L. Kari), kalpana@csd.uwo.ca, kmahalingam@iitm.ac.in (K. Mahalingam), sseki@csd.uwo.ca (S. Seki).

To return to our motivation, the proof of the extended Fine-and-Wilf's theorem [4], as well as that of an extension of the Lyndon–Schützenberger equation $u^i = v^j w^k$ in [10], to cases involving both words and their Watson–Crick complements, pointed out the importance of investigating overlaps between the square u^2 of a word u, and its complement $\theta(u)$, i.e., overlaps of the form $u^2 = v\theta(u)w$ for some words v, w. This is an analogue of the classical situation wherein u^2 overlaps with u, i.e., $u^2 = vuw$, which happens iff $v = p^i$ and $w = p^j$ for some $i, j \ge 1$, where p is the primitive root of u.

A natural question is thus whether there is any kind of 'root' which characterizes overlaps between u^2 and $\theta(u)$ in the same way in which the primitive root characterizes the overlaps between u^2 and u. For an arbitrary involution ι , this paper proposes as a candidate the notion of ι -twin-roots of a word. Unlike the primitive root, the ι -twin-roots are defined only for ι -symmetric words. A word u is ι -symmetric if $u = \alpha\beta = \iota(\beta\alpha)$ for some words α , β and the connection with the overlap problem is the following: If ι is an involution and u is an ι -symmetric word, then u^2 overlaps with $\iota(u)$, i.e., $u^2 = \alpha\iota(u)\beta$. The implication becomes equivalence if ι is a morphic or antimorphic involution. In this paper, we prove that an ι -symmetric word u has unique ι -twin-roots (x, y) such that xy is the primitive root of u (i.e., $u = (xy)^n$ for some $n \ge 1$). In addition, if $u = \alpha\beta = \iota(\beta\alpha)$, then $\alpha = (xy)^i x$, $\beta = y(xy)^{n-i-1}$ for some $i \ge 1$ (Proposition 4). Moreover, we provide several characterizations of ι -twin-roots for the case when ι is morphic or antimorphic.

The paper is organized as follows. After basic notations, definitions and examples in Section 2, in Section 3 we investigate relationships between the primitive root and twin-roots of a word. We namely show that for an involution ι , the primitive root of an ι -symmetric word equals the catenation of its ι -twin-roots. Furthermore, for a morphic or antimorphic involution δ , we provide several characteristics of δ -twin-roots of words. In Section 4, we place the set of δ -symmetric words in the Chomsky hierarchy of languages. As an application of these results, in Section 5 we investigate the μ -commutativity between languages, $XY = \mu(Y)X$, for a morphic involution μ .

2. Preliminaries

Let Σ be a finite alphabet. A word over Σ is a finite sequence of symbols in Σ . The empty word is denoted by λ . By Σ^* , we denote the set of all words over Σ , and $\Sigma^+ = \Sigma^* \setminus \{\lambda\}$. For a word $w \in \Sigma^*$, the set of its prefixes, infixes, and suffixes are defined as follows: $\operatorname{Pref}(w) = \{u \in \Sigma^+ \mid \exists v \in \Sigma^*, uv = w\}$, $\operatorname{Inf}(w) = \{u \in \Sigma^+ \mid \exists v, v' \in \Sigma^*, vuv' = w\}$, and $\operatorname{Suff}(w) = \{u \in \Sigma^+ \mid \exists v \in \Sigma^*, vu = w\}$. For other notions in the formal language theory, we refer the reader to [11,12].

A word $u \in \Sigma^+$ is said to be *primitive* if $u = v^i$ implies i = 1. By Q we denote the set of all primitive words. For any nonempty word $u \in \Sigma^+$, there is a unique primitive word $p \in Q$, which is called the *primitive root* of u, such that $u = p^n$ for some $n \ge 1$. The primitive root of u is denoted by \sqrt{u} .

An *involution* is a mapping f such that f^2 is the identity. A *morphism* (resp. *antimorphism*) f over an alphabet Σ is a mapping such that f(uv) = f(u)f(v) (f(uv) = f(v)f(u)) for all words $u, v \in \Sigma^*$. We denote by f, ι, μ, θ , and δ , an arbitrary mapping, an involution, a morphic involution, an antimorphic involution and a d-morphic involution (an involution that is either morphic or antimorphic), respectively. Note that an involution is not always length-preserving but a d-morphic involution is.

A palindrome is a word which is equal to its mirror image. The concept of palindromes was generalized to θ -palindromes, [7,9], where θ is an arbitrary antimorphic involution: a word w is called a θ -palindrome if $w = \theta(w)$.

This definition can be generalized as follows: For an arbitrary mapping f on Σ^* , a word $w \in \Sigma^*$ is called a f-palindrome if w = f(w). We denote by P_f the set of all f-palindromes over Σ^* . The name f-palindrome serves as a reminder of the fact that, in the particular case when f is the mirror-image function, i.e., the identity function on Σ extended to an antimorphism of Σ^* , an f-palindrome is an ordinary palindrome. An additional reason for this choice of term was the fact that, in biology, the term "palindrome" is routinely used to describe DNA strings u with the property that $\theta(u) = u$, where θ is the Watson–Crick complementarity function. In the case when f is an arbitrary function on Σ^* , what we here call an f-palindrome is simply a fixed point for the function f.

Lemma 1. Let $u \in \Sigma^+$ and δ be a d-morphic involution. Then $u \in P_{\delta}$ if and only if $\sqrt{u} \in P_{\delta}$.

Proof. Note that $\delta(\sqrt{u}^n) = \delta(\sqrt{u})^n$ for a d-morphic involution δ . If $u \in P_{\delta}$, then we have $\sqrt{u}^n = \delta(\sqrt{u}^n)$. This means that $\sqrt{u}^n = \delta(\sqrt{u})^n$. Since δ is length-preserving, $\sqrt{u} = \delta(\sqrt{u})$. The opposite direction can be proved in a similar way. \Box

The θ -symmetric property of a word was introduced in [9] for antimorphic involutions θ . In [9], a word is said to be θ -symmetric if it can be written as a product of two θ -palindromes. We extend this notion to the *f*-symmetric property, where *f* is an arbitrary mapping. For a mapping *f*, a nonempty word $w \in \Sigma^+$ is *f*-symmetric if $w = \alpha\beta = f(\beta\alpha)$ for some $\alpha \in \Sigma^+$ and $\beta \in \Sigma^*$. Our definition is a generalization of the definition in [9]. Indeed, when *f* is an antimorphic involution, $w = \alpha\beta = f(\beta\alpha) = f(\alpha)f(\beta)$ implies $\alpha, \beta \in P_f$. For an *f*-symmetric word *w*, we call a pair (α, β) such that $w = \alpha\beta = f(\beta\alpha)$ an *f*-symmetric factorization of *w*. Given an *f*-symmetric factorization (α, β) of a word, α is called its left factor and β is called its right factor. We denote by S_f the set of all *f*-symmetric words over Σ^* . We have the following observation on the inclusion relation between P_f and S_f .

Proposition 2. For a mapping f on Σ^* , $P_f \subseteq S_f$.

3. Twin-roots and primitive roots

Given an involution ι , in this section we define the notion of ι -twin-roots of an ι -symmetric word u with respect to ι . We prove that any ι -symmetric word u has unique ι -twin roots. We show that the right and left factors of any ι -symmetric factorization of u as $u = \alpha\beta = \iota(\beta\alpha)$ can all be expressed in terms of the twin-roots of u with respect to ι . Moreover, we show that the catenation of the twin-roots of an ι -symmetric word u with respect to ι equals the primitive root of u. We also provide several other properties of twin-roots, for the particular case of d-morphic involutions.

We begin by recalling a theorem from [6] on language equation of the type Xu = vX, whose corollary will be used for finding the "twin-roots" of an *i*-symmetric word.

Corollary 3 ([6]). Let $u, v, w \in \Sigma^+$. If uw = wv, then there uniquely exist two words $x, y \in \Sigma^*$ with $xy \in Q$ such that $u = (xy)^i, v = (yx)^i$, and $w = (xy)^j x$ for some $i \ge 1$ and $j \ge 0$.

Proposition 4. Let ι be an involution on Σ^* and u be an ι -symmetric word. Then there uniquely exist two words $x, y \in \Sigma^*$ such that $u = (xy)^i$ for some $i \ge 1$ with $xy \in Q$, and if $u = \alpha\beta = \iota(\beta\alpha)$ for some $\alpha, \beta \in \Sigma^*$, then there exists $k \ge 0$ such that $\alpha = (xy)^{i-k-1}x$ and $\beta = y(xy)^k$.

Proof. Given that u is ι -symmetric and (α, β) is an ι -symmetric factorization of u. It is easy to see that $\beta u = \iota(u)\beta$ holds. Then from Corollary 3, there exist two words $x, y \in \Sigma^*$ such that $xy \in Q, u = (xy)^i, \iota(u) = (yx)^i$, and $\beta = y(xy)^k$ for some $k \ge 0$. Since $u = \alpha\beta = (xy)^i$, we have $\alpha = (xy)^{i-k-1}x$. Now we have to prove that such (x, y) does not depend on the choice of (α, β) . Suppose there were an ι -symmetric factorization (α', β') of u for which $x'y' \in Q, u = (x'y')^i, \iota(u) = (y'x')^i, \alpha' = (x'y')^{i-j-1}x'$, and $\beta' = y'(x'y')^j$ for some $0 \le j < i$ and $x', y' \in \Sigma^*$ such that $(x, y) \ne (x', y')$. Then we have xy = x'y' and yx = y'x', which contradicts the primitivity of xy. \Box

The preceding result shows that, if u is ι -symmetric, then its left factor and right factor can be written in terms of a unique pair (x, y). We call (x, y) the *twin-roots of u with respect to* ι , or shortly ι -*twin-roots of u*. We denote the ι -twin-roots of u by $\sqrt[4]{u}$. Note that $x \neq y$ and we can assume that x cannot be empty whereas y can. Proposition 4 has the following two consequences.

Corollary 5. Let ι be an involution on Σ^* and u be an ι -symmetric word. Then the number of ι -symmetric factorizations of u is n for some $n \ge 1$ if and only if $u = (\sqrt{u})^n$.

Corollary 6. Let ι be an involution on Σ^* and u be an ι -symmetric word such that $\sqrt[4]{u} = (x, y)$. Then the primitive root of u is xy.

Corollary 6 is the first result that relates the notion of the primitive root of an ι -symmetric word to ι -twin-roots. For the particular case of a d-morphic involution δ , the primitive root and the δ -twin-roots are related more strongly. Firstly, we make a connection between the two elements of δ -twin-roots.

Lemma 7. Let δ be a d-morphic involution on Σ^* , and u be a δ -symmetric word with δ -twin-roots (x, y). Then $xy = \delta(yx)$.

Proof. Let $u = (xy)^i = \alpha\beta = \delta(\beta\alpha)$ for some $i \ge 1$ and $\alpha, \beta \in \Sigma^*$. Due to Proposition 4, $\alpha = (xy)^k x$ and $\beta = y(xy)^{i-k-1}$ for some $0 \le k < i$. Substituting these into $(xy)^i = \delta(\beta\alpha)$ results in $(xy)^i = \delta((yx)^i)$. Since δ is either morphic or antimorphic, we have $xy = \delta(yx)$. \Box

Proposition 8. Let δ be a d-morphic involution on Σ^* , and u, v be δ -symmetric words. Then $\sqrt{u} = \sqrt{v}$ if and only if $\sqrt[\delta]{u} = \sqrt[\delta]{v}$.

Proof. (If) For $\sqrt[\delta]{u} = \sqrt[\delta]{v} = (x, y)$, Corollary 6 implies $\sqrt{u} = \sqrt{v} = xy$. (Only if) Let $\sqrt[\delta]{u} = (x, y)$ and $\sqrt[\delta]{v} = (x', y')$. Corollary 6 implies $\sqrt{u} = xy$ and $\sqrt{v} = x'y'$. Let $p = \sqrt{u} = \sqrt{v}$ and we have p = xy = x'y'. From Lemma 7, both (x, y) and (x', y') are δ -symmetric factorizations of p. If $(x, y) \neq (x', y')$, due to Corollary 5, $p = (\sqrt{p})^n$ for some $n \ge 2$, a contradiction. \Box

Proposition 9. Let δ be a *d*-morphic involution on Σ^* , and *u* be a δ -symmetric word such that $\sqrt[3]{u} = (x, y)$.

- (1) If δ is antimorphic, then both x and y are δ -palindromes,
- (2) If δ is morphic, then either (i) x is a δ -palindrome and $y = \lambda$, or (ii) x is not a δ -palindrome and $y = \delta(x)$.

Proof. Due to Lemma 7, we have $xy = \delta(yx)$. If δ is antimorphic, then this means that $xy = \delta(x)\delta(y)$, and hence $x = \delta(x)$ and $y = \delta(y)$. If δ is morphic, then $xy = \delta(y)\delta(x)$. If $y = \lambda$, then we have $x = \delta(x)$. Otherwise, we have three cases depending on the lengths of x and y. If they have the same length, then $y = \delta(x)$. The primitivity of xy forces x not to be a δ -palindrome. If |x| < |y|, then $y = y_1y_2$ for some $y_1, y_2 \in \Sigma^+$ such that $\delta(y) = xy_1$ and $y_2 = \delta(x)$. Then $xy = x\delta(x)\delta(y_1) = \delta(y_1)x\delta(x)$, which is a contradiction with $xy \in Q$. The case when |y| < |x| can be proved by symmetry. \Box

Next we consider the δ -twin-roots of a δ -palindrome; indeed δ -palindromes are δ -symmetric (Proposition 2), and hence have δ -twin-roots. The δ -twin-roots of δ -palindromes have the following property.

Lemma 10. Let δ be a d-morphic involution and u be a δ -symmetric word such that $\sqrt[\delta]{u} = (x, y)$ for some $x \in \Sigma^+$ and $y \in \Sigma^*$. Then u is a δ -palindrome if and only if x is a δ -palindrome and $y = \lambda$. **Proof.** (If) Since $y = \lambda$, $u = x^i$ for some $i \ge 1$. Then $\delta(u) = \delta(x^i) = \delta(x)^i = x^i$, and hence $u \in P_{\delta}$. (**Only if**) First we consider the case when δ is antimorphic. From Proposition 9, $x, y \in P_{\delta}$. Suppose $y \ne \lambda$. Since $u \in P_{\delta}$, Lemma 1 implies $\sqrt{u} \in P_{\delta}$, and hence $xy = \delta(xy) = \delta(y)\delta(x) = yx$. This means that nonempty words x and y commute, a contradiction with $xy \in Q$. Next we consider the case of δ being morphic. Since u is a δ -palindrome, any letter a from u has the palindrome property, i.e., $\delta(a) = a$. Then all prefixes of u satisfy the palindrome property so that $x = \delta(x)$. Proposition 9 implies either $y = \lambda$ or $y = \delta(x)$, but the latter, with $\sqrt{u} = xy$, leads to $\sqrt{u} = x^2$, a contradiction. \Box

Note that the notion of *i*-symmetry and *i*-twin-roots of a word are dependent on the involution *i* under consideration. Thus, for example, a word *u* may be *i*₁-symmetric and not *i*₂-symmetric, and its twin-roots might be different depending on the involution considered. The following two examples show that there exist words *u* and morphic involutions μ_1 and μ_2 such that the μ_1 -twin-roots of *u* are different from μ_2 -twin-roots of *u*, and the same situation can be found for the antimorphic case.

Example 11. Let u = ATTAATTA, μ_1 be the identity on Σ extended to a morphism, and μ_2 be the morphic involution such that $\mu_2(A) = T$ and $\mu_2(T) = A$. Then u is both μ_1 -symmetric and μ_2 -symmetric. Indeed, $u = ATTA \cdot ATTA = \mu_1(ATTA)\mu_1(ATTA)$, and $u = AT \cdot TAATTA = \mu_2(TAATTA)\mu_2(AT)$. The μ_1 -symmetric property of u implies that $\sqrt[\mu]{u} = (ATTA, \lambda)$, and the μ_2 -symmetric property of u implies $\sqrt[\mu]{u} = (AT, TA)$. We can easily check that $\sqrt{u} = ATTA \cdot \lambda = AT \cdot TA$.

Example 12. Let u = TAAATTTAAATT, *mi* be the identity on Σ extended to an antimorphism, namely the well-known mirror-image mapping, and θ be the antimorphic involution such that $\theta(A) = T$ and $\theta(T) = A$. We can split u into two palindromes TAAAT and TTAAATT so that u is *mi*-symmetric. By the same token, u is a product of two θ -palindromes TAAATTTA and AATT, and hence θ -symmetric. We have that $\sqrt[mi]{u} = (\text{TAAAT}, T)$ and $\sqrt[\theta]{u} = (\text{TA}, \text{AATT})$. Note that $\sqrt{u} = \text{TAAAT} \cdot T = \text{TA} \cdot \text{AATT}$ holds.

The last example shows that it is possible to find a word u, and morphic and antimorphic involutions μ and θ , such that the μ -twin-roots of u and the θ -twin-roots of u are distinct.

Example 13. Let u = AACGTTGC. μ and θ be morphic and antimorphic involutions, respectively, which map A to T, C to G, and vice versa. Then $u = \mu(TTGC)\mu(AACG) = \theta(AACGTT)\theta(GC)$ so that u is both μ -symmetric and θ -symmetric. We have that $\sqrt[4]{u} = (AACG, TTGC)$ and $\sqrt[6]{u} = (AACGTT, GC)$. Moreover $\sqrt{u} = AACG \cdot TTGC = AACGTT \cdot GC$.

4. The set of symmetric words in the Chomsky hierarchy

In this section we consider the classification of the language S_{μ} of the μ -symmetric words with respect to a morphic involution μ , and S_{θ} of the θ -symmetric words with respect to an antimorphic involution θ , in the Chomsky hierarchy, [2,11]. For a morphic involution μ , we show that P_{μ} , the set of all μ -palindromes, is regular (Proposition 14). Unless empty, the set $S_{\mu} \setminus P_{\mu}$ of all μ -symmetric but non- μ -palindromic words, is not context-free (Proposition 16) but is context-sensitive (Proposition 19). As a corollary of these results we show that, unless empty, the set S_{μ} of all μ -symmetric words is context-sensitive (Corollary 20), but not context-free (Corollary 17). In contrast, for an antimorphic involution θ , the set of all θ -symmetric words turns out to be context-free (Proposition 21).

Proposition 14. Let μ be a morphic involution on Σ^* . Then P_{μ} is regular.

Proof. For $\Sigma_p = \{a \in \Sigma \mid a = \mu(a)\}$, $P_\mu = \Sigma_p^*$, which is regular. \Box

Next we consider $S_{\mu} \setminus P_{\mu}$. If $c = \mu(c)$ holds for all letters $c \in \Sigma$, then $\Sigma^* = P_{\mu}$, that is, $S_{\mu} \setminus P_{\mu}$ is empty. Therefore, we assume the existence of a character $c \in \Sigma$ satisfying $c \neq \mu(c)$. Under this assumption, we show that $S_{\mu} \setminus P_{\mu}$ is not context-free but context-sensitive.

Lemma 15. Let μ be a morphic involution on Σ^* . If there is $c \in \Sigma$ such that $c \neq \mu(c)$, then $S_{\mu} \setminus P_{\mu}$ is infinite.

Proof. This is clear from the fact that $(c\mu(c))^k \in S_{\mu} \setminus P_{\mu}$ for all $k \ge 1$. \Box

Proposition 16. Let μ be a morphic involution on Σ^* . If Σ contains a character $c \in \Sigma$ satisfying $c \neq \mu(c)$, then $S_{\mu} \setminus P_{\mu}$ is not context-free.

Proof. Lemma 15 implies that $S_{\mu} \setminus P_{\mu}$ is not finite. Suppose $S_{\mu} \setminus P_{\mu}$ were context-free. Then there is an integer *n* given to us by the pumping lemma. Let us choose $z = a^n \mu(a)^n a^n \mu(a)^n$ for some $a \in \Sigma$ satisfying $a \neq \mu(a)$. We may write z = uvwxy subject to the usual constraints (1) $|vwx| \le n$, (2) $vx \neq \lambda$, and (3) for all $i \ge 0$, $z_i = uv^i wx^i y \in S_{\mu} \setminus P_{\mu}$.

Note that for any $w \in S_{\mu} \setminus P_{\mu}$ and any $a \in \Sigma$ satisfying $a \neq \mu(a)$, the number of occurrences of a in w should be equal to that of $\mu(a)$ in w. Therefore, if vx contained different numbers of a's and $\mu(a)$'s, $z_0 = uwy$ would not be a member of $S_{\mu} \setminus P_{\mu}$. Suppose vwx straddles the first block of a's and the first block of $\mu(a)$'s of z, and vx consists of k a's and k $\mu(a)$'s for some k > 0. Note that 2k < n because $|vx| \leq |vwx| \leq n$. Then $z_0 = a^{n-k}\mu(a)^{n-k}a^n\mu(a)^n$, and $z_0 \in S_{\mu} \setminus P_{\mu}$ means that there exist $\gamma \notin P_{\mu}$ and an integer $m \geq 1$ such that $z_0 = (\gamma \mu(\gamma))^m$. Thus, $\mu(\gamma) \in \Sigma^*\mu(a)$, i.e., $\gamma \in \Sigma^*a$. This implies that the last block of $\mu(a)$ of z_0 is a suffix of the last $\mu(\gamma)$ of z_0 , and hence $|\gamma| = |\mu(\gamma)| \geq n$. As a result, $a^{n-k}\mu(a)^k \in \operatorname{Pref}(\gamma)$, i.e., $\mu(a)^{n-k}a^k \in \operatorname{Pref}(\mu(\gamma))$. Since $a \neq \mu(a)$, we have $\mu(\gamma) = \mu(a)^{n-k}a^k\beta\mu(a)^n$ for some $\beta \in \Sigma^*$.

This implies $|\mu(\gamma)| \ge 2n$. On the other hand, $|z_0| = 4n - 2k$, and hence $|\mu(\gamma)| \le 2n - k$. Now we reached the contradiction. Even if we suppose that vwx straddles the second block of a's and the second block of $\mu(a)$'s of z, we would reach the same contradiction. Finally, suppose that vwx were a substring of the first block of $\mu(a)$'s and the second block of a's of z. Then $z_0 = a^n \mu(a)^{n-k} a^{n-k} \mu(a)^n = (\gamma \mu(\gamma))^m$ for some $m \ge 1$. As proved above, $\mu(a)^n \in \text{Suff}(\mu(\gamma))$, and this is equivalent to $a^n \in \text{Suff}(\gamma)$. Since z_0 contains the n consecutive a's only as the prefix a^n , we have $\gamma = a^n$, i.e., $\mu(\gamma) = \mu(a)^n$. However, the prefix a^n is followed by at most n-k occurrences of $\mu(a)$ and $k \ge 1$. This is a contradiction. Consequently, $S_{\mu} \setminus P_{\mu}$ is not context-free. \Box

The proof of Proposition 16 suggests that for an alphabet Σ containing a character c satisfying $c \neq \mu(c)$, S_{μ} is not context-free either.

Corollary 17. Let μ be a morphic involution on Σ^* . If Σ contains a character $c \in \Sigma$ satisfying $c \neq \mu(c)$, then S_{μ} is not context-free.

Next we prove that $S_{\mu} \setminus P_{\mu}$ is context-sensitive. We will construct a type-0 grammar and prove that the grammar is indeed a context-sensitive grammar. For this purpose, the workspace theorem is employed, which requires a few terminologies: Let G = (N, T, S, P) be a grammar and consider a derivation D according to G like $D : S = w_0 \Rightarrow w_1 \Rightarrow \cdots \Rightarrow w_n = w$. The workspace of w by D is defined as $WS_G(w, D) = \max\{|w_i| \mid 0 \le i \le n\}$. The workspace of w is defined as $WS_G(w) = \min\{WS_G(w, D) \mid D \text{ is a derivation of } w\}$.

Theorem 18 (Workspace Theorem [11]). Let G be a type-0 grammar. If there is a nonnegative integer k such that $WS_G(w) \le k|w|$ for all nonempty words $w \in L(G)$, then L(G) is context-sensitive.

Proposition 19. Let μ be a morphic involution on Σ^* . If Σ contains a character $c \in \Sigma$ satisfying $c \neq \mu(c)$, then $S_{\mu} \setminus P_{\mu}$ is context-sensitive.

Proof. We provide a type-0 grammar which generates a language equivalent to $S_{\mu} \setminus P_{\mu}$. Let $G = (N, \Sigma, P, S)$, where $N = \{S, \hat{Z}, \overleftarrow{Z}, \hat{X}_i, \hat{X}_m, Y, \overleftarrow{L}, \#\} \cup \bigcup_{a \in \Sigma} \{\overrightarrow{X}_a, \overrightarrow{C}_a\}$, the set of nonterminal symbols, and *P* is the set of production rules given below. First off, this grammar creates $\alpha \mu(\alpha)$ for $\alpha \in \Sigma^*$ that contains a character $c \in \Sigma$ satisfying $c \neq \mu(c)$. The 1–7th rules of the following list of *P* achieve this task. Secondly, 5th and 10–18th rules copy $\alpha \mu(\alpha)$ at arbitrary times so that the resulting word is $(\alpha \mu(\alpha))^i$ for some $i \geq 0$.

1.	S		$#\hat{Z}a\hat{X}_i \overrightarrow{X}_a Y#$	$\forall a \in \Sigma,$
2.	S			$\forall b \in \Sigma$ such that $b \neq \mu(b)$,
3.		\rightarrow		$\forall a, c \in \Sigma,$
			$\overleftarrow{L}\mu(a)Y$	$\forall a \in \Sigma,$
	cĹ		τc	$\forall c \in \Sigma,$
	$\hat{X}_i \overleftarrow{L}$		$a\hat{X}_i \overrightarrow{X_a}$	$\forall a \in \Sigma,$
7.	$\hat{X}_i \overleftarrow{L}$	\rightarrow	$b\hat{X}_m \overrightarrow{X_b}$	$\forall b \in \Sigma$ such that $b \neq \mu(b)$,
	$\hat{X}_m \overleftarrow{L}$			$\forall a \in \Sigma,$
	$\hat{X}_m \overleftarrow{L}$			
	ÂαĹ			$\forall a \in \Sigma,$
	$\overrightarrow{C_a}c$			$\forall a, c \in \Sigma,$
12.	$\overrightarrow{C_a} Y$			$\forall a \in \Sigma,$
13.	$\overrightarrow{C_a}$ #		∑a#	$\forall a \in \Sigma,$
	ΥĹ		τ̈́Y,	
	ÂΥĹ	\rightarrow	ΣĹΥ	
16.	ŻΥĹ	\rightarrow	λ	
	cŹ		Σc	$\forall c \in \Sigma,$
18.	#Ź	\rightarrow	# <i>2</i> ,	
19.	#	\rightarrow	λ.	

This grammar works in the following manner. After the 1st or 6th rule generates a terminal symbol $a \in \Sigma$, the 3rd and 4th rules deliver information of the symbol to Y and generate $\mu(a)$ just before Y, and by the 5th rule, the header \widehat{L} go back to \hat{X}_i . This process is repeated until a character $b \in \Sigma$ satisfying $b \neq \mu(b)$ is generated, which is followed by changing \hat{X}_i to \hat{X}_m and generating $\mu(b)$ just before Y. Now the grammar may continue the a- $\theta(a)$ generating process or shift to a copy phase (9th rule $\hat{X}_m \widehat{L} \rightarrow \widehat{L}$). From now on, whenever the a- $\mu(a)$ process ends, the grammar can do this choice. Just after using the 9th rule $\hat{X}_m \widehat{L} \rightarrow \widehat{L}$, the sentential form of this derivation is $\hat{Z} \alpha \widehat{L} \mu(\alpha) Y$ for some $\alpha \in \Sigma^+$ which contains at least one character $b \in \Sigma$ satisfying $b \neq \mu(b)$. The 5th and 10–18th rules copy $\alpha \mu(\alpha)$ at the end of sentential form. Just after coping $\alpha \mu(\alpha)$, the sentential form $\alpha \mu(\alpha) \hat{Z} Y \widehat{L} (\alpha \mu(\alpha))^m$ appears so that if the 15th rule is applied, then another

 $\alpha\mu(\alpha)$ is copied; otherwise the derivation terminates. Therefore, a word w derived by this grammar G can be represented as $(\alpha\mu(\alpha))^n$ for some $n \ge 1$, and hence $w \in S_\mu$. In addition, G generates only non- θ -palindromic word so that $w \in S_\mu \setminus P_\mu$. Thus, $L(G) \subseteq S_\mu \setminus P_\mu$. Conversely, if $w \in S_\mu \setminus P_\mu$, then it has the μ -twin-roots $\sqrt[n]{w} = (x, y)$ and $w = (xy)^n$ for some $n \ge 1$. Since $y = \mu(x)$, w can be generated by G. Therefore, $S_\mu \setminus P_\mu \subseteq L(G)$. Consequently, $L(G) = S_\mu \setminus P_\mu$. Furthermore, this grammar satisfies the workspace theorem (Theorem 18). Any sentential form to derive a word cannot be longer than |w| + c for some constant $c \ge 0$. Therefore, L(G) is context-sensitive. \Box

Corollary 20. Let μ be a morphic involution on Σ^* . If Σ contains a character $c \in \Sigma$ satisfying $c \neq \mu(c)$, then S_{μ} is context-sensitive.

Finally we show that the set of all θ -symmetric words for an antimorphic involution θ is context-free.

Proposition 21. For an antimorphic involution θ , S_{θ} is context-free.

Proof. It is known that P_{θ} is context-free and the family of context-free languages is closed under catenation. Since $S_{\theta} = P_{\theta} \cdot P_{\theta}$, S_{θ} is context-free. \Box

5. On the pseudo-commutativity of languages

We conclude this paper with an application of the results obtained in Section 3 to the μ -commutativity of languages for a morphic involution μ . For two languages $X, Y \subseteq \Sigma^*, X$ is said to μ -commute with Y if $XY = \mu(Y)X$ holds.

Example 22. Let $\Sigma = \{a, b\}$ and μ be a morphic involution such that $\mu(a) = b$ and $\mu(b) = a$. For $X = \{ab(baab)^i \mid i \ge 0\}$ and $Y = \{(baab)^j \mid j \ge 1\}$, $XY = \mu(Y)X$ holds.

In this section we investigate languages X which μ -commute with a set Y of μ -symmetric words. When analyzing such pseudo-commutativity equations, the first step is to investigate equations wherein the set of the shortest words in X μ -commutes with the set of the shortest words of Y. (In [3], the author used this strategy to find a solution to the classical commutativity of formal power series, result known as Cohn's theorem.) For $n \ge 0$, by X_n we denote the set of all words in X of length n, i.e., $X_n = \{w \in X \mid |w| = n\}$. Let m and n be the lengths of the shortest words in X and Y, respectively. Then $XY = \mu(Y)X$ implies $X_mY_n = \mu(Y_n)X_m$. The main contribution of this section is to use results from Section 3 to prove that X cannot contain any word shorter than the shortest left factor of all μ -twin-roots of words in Y_n (Proposition 28). Its proof requires several results, e.g., Lemmata 25–27.

Lemma 23 ([12]). Let $u, v \in \Sigma^+$ and $X \subseteq \Sigma^*$. If X is not empty and Xu = vX holds, then $|X_n| \le 1$ for all $n \in \mathbb{N}_0$.

Lemma 24. Let $u, v \in \Sigma^+$ and $X \subseteq \Sigma^*$. If X is not empty and $uX = \mu(X)v$ holds, then $|X_n| \le 1$ for all $n \in \mathbb{N}_0$.

Let $X \subseteq \Sigma^*$, $Y \subseteq S_{\mu} \setminus P_{\mu}$ such that $XY = \mu(Y)X$, and *n* be the length of the shortest words in Y. For $n \ge 1$, let $Y_{n,\ell} = \{y \in Y_n \mid \frac{\mu}{y} = (x, \mu(x)), |x| = \ell\}$. Informally speaking, $Y_{n,\ell}$ is a set of words in Y of length *n* having the μ -twinroots whose left factor is of length ℓ .

Lemma 25. Let $Y \subseteq S_{\mu} \setminus P_{\mu}$, $y_1, y_2 \in Y_{n,\ell}$ for some $n, \ell \geq 1$, and $u, w \in \Sigma^*$. If $uy_1 = \mu(y_2)w$ and $|u|, |w| \leq \ell$, then u = w.

Proof. Since $|y_1| = |y_2| = n$, we have |u| = |w|. Let $y_1 = (x_1\mu(x_1))^{n/2\ell}$ and $y_2 = (x_2\mu(x_2))^{n/2\ell}$, where $\sqrt[\mu]{y_1} = (x_1, \mu(x_1))$ and $\sqrt[\mu]{y_2} = (x_2, \mu(x_2))$ for some $x_1, x_2 \in \Sigma^+$. Now we have $u(x_1\mu(x_1))^{n/2\ell} = \mu(x_2\mu(x_2))^{n/2\ell}w$. This equation, with $|u| \le \ell$, implies that $ux_1\mu(x_1) = \mu(x_2\mu(x_2))w$. Then we have $\mu(x_2) = u\alpha$ for some $\alpha \in \Sigma^*$, and $ux_1\mu(x_1) = u\alpha\mu(u)\mu(\alpha)w$. This means $x_1 = \alpha\mu(u)$ and $\mu(x_1) = \mu(\alpha)w$, which conclude u = w. \Box

Lemma 26. Let $X \subseteq \Sigma^*$, and $Y \subseteq S_{\mu} \setminus P_{\mu}$ such that $XY = \mu(Y)X$. For integers $m, n \ge 1$ such that $X_mY_n = \mu(Y_n)X_m$ and $m \le \min\{\ell \mid Y_{n,\ell} \ne \emptyset\}$, we have $X_mY_{n,\ell} = \mu(Y_{n,\ell})X_m$ for all $\ell \ge 1$.

Proof. Let $y_1 \in Y_n$ such that $y_1 = (x_1\mu(x_1))^i$ for some $i \ge 1$, where $\sqrt[\mu]{y_1} = (x_1, \mu(x_1))$. Since $X_m Y_n = \mu(Y_n)X_m$ holds, there exist $u, v \in X_m$ and $y_2 \in Y_n$ satisfying $uy_1 = \mu(y_2)v$. When $y_2 = (x_2\mu(x_2))^j$ for some $j \ge 1$, where $\sqrt[\mu]{y_2} = (x_2, \mu(x_2))$, we will show that i = j.

Suppose $i \neq j$. We only have to consider the case where *i* and *j* are relatively prime. The symmetry makes it possible to assume i < j, and we consider three cases: (1) i = 1 and *j* is even; (2) i = 1 and *j* is odd; and (3) $i, j \ge 2$. Firstly, we consider the case (1), where we have $ux_1\mu(x_1) = (\mu(x_2)x_2)^{j}v$. Since $|u| \le |x_1|, |x_2|$, we can let $ux_1 = (\mu(x_2)x_2)^{j/2}\alpha$ and $\alpha\mu(x_1) = (\mu(x_2)x_2)^{j/2}v$ for some $\alpha \in \Sigma^*$. Note that $|\alpha| = |u| = |v|$ because $|x_1\mu(x_1)| = |(\mu(x_2)x_2)^{j/2-1}\alpha$. Substituting these into the latter equation gives $\alpha\mu(\beta)\mu(x_2)(x_2\mu(x_2))^{j/2-1}\mu(\alpha) = u\beta x_2(\mu(x_2)x_2)^{j/2-1}v$. This provides us with $x_2 = \mu(x_2)$, which contradicts $x_2 \notin P_{\mu}$. Case (2) is that i = 1 and *j* is odd. In a similar way as the preceding case, let $ux_1 = (\mu(x_2)x_2)^{(j-1)/2}\mu(x_2)\alpha$ and $\alpha\mu(x_1) = x_2(\mu(x_2)x_2)^{(j-1)/2}v$ for some $\alpha \in \Sigma^*$. Since $|u| \le |x_2|$, the first equation implies that $\mu(x_2) = u\beta$ for some $\beta \in \Sigma^*$. Then substituting this into the second equation results in $\alpha = \mu(u)$. By the same token, we have $\alpha = \mu(v)$, and hence u = v. Therefore, $ux_1\mu(x_1) = (\mu(x_2)x_2)^{j}u = u\beta\mu(u)\mu(\beta)(u\beta\mu(u)\mu(\beta))^{j-1}u = u(\beta\mu(u)\mu(\beta)u)^j$. Thus, $x_1\mu(x_1) = (\beta\mu(u)\mu(\beta)u)^j$, which contradicts the primitivity of $x_1\mu(x_1)$ because the assumption that *j* is odd and i < j implies $j \ge 3$.

Fig. 1. It is not always the case that $|\alpha_1| < |\alpha_2| < \cdots < |\alpha_j|$. However, we can say that for any k_1, k_2 , if $k_1 \neq k_2$, then $|\alpha_{k_1}| \neq |\alpha_{k_2}|$.

What remains now is the case (3) where $i, j \ge 2$ are relatively prime. Since $n = i \cdot |x_1\mu(x_1)| = j \cdot |x_2\mu(x_2)|$, the relative primeness between i and j means that $|x_1\mu(x_1)| = j\ell$ and $|x_2\mu(x_2)| = i\ell$ for some $\ell \ge 1$. For all $1 \le k \le j$, $u(x_1\mu(x_1))^{i_k}\alpha_k = \mu(x_2\mu(x_2))^k$ for some $0 \le i_k \le i$ and $\alpha_k \in \operatorname{Pref}(x_1\mu(x_1))$. We claim that for some ℓ' satisfying $0 \le \ell' < \ell$, there exists a 1-to-1 correspondence between $\{|\alpha_1|, \ldots, |\alpha_j|\}$ and $\{0 + \ell', \ell + \ell', 2\ell + \ell', \ldots, (j-1)\ell + \ell'\}$. Indeed, $u(x_1\mu(x_1))^{i_k}\alpha_k = \mu(x_2\mu(x_2))^k$ implies $|u| + i_k j\ell + |\alpha_k| = k|x_2\mu(x_2)|$. Then, $|\alpha_k| = k|x_2\mu(x_2)| - i_k j\ell - |u| = (ik - i_k j)\ell - |u|$. Thus, $|\alpha_k| = -|u| \pmod{\ell}$. We can easily check that if there exist $1 \le k_1, k_2 \le j$ satisfying $ik_1 - i_{k_1} j = ik_2 - i_{k_2} j$, then $k_1 = k_2 \pmod{j}$ because i and j are relatively prime. As a result, $\bigcup_{k=1}^{k=j} \{ik - i_k j \pmod{j}\} = \{0, 1, \ldots, j-1\}$. By letting $\ell' = -|u| \pmod{\ell}$, the existence of the 1-to-1 correspondence has been proved.

Since $\ell' < \ell$ and $i\ell = |x_2\mu(x_2)|$, let $\mu(x_2\mu(x_2)) = \beta w \alpha$ for some β , $w, \alpha \in \Sigma^*$ such that $|\beta| = \ell - \ell'$, $|w| = (i - 1)\ell$, and $|\alpha| = \ell'$. Then $u(x_1\mu(x_1))^{i_k}\alpha_k = \mu(x_2\mu(x_2))^k$ implies that for all $k, \alpha \in Suff(\alpha_k)$. Recall that for all $k, \alpha_k \in Pref(x_1\mu(x_1))$. Then, with the 1-to-1 correspondence, we can say that α appears on $x_1\mu(x_1)$ at even intervals. Let $x_1\mu(x_1) = \alpha\beta_1\alpha\beta_2\cdots\alpha\beta_j$ (see Fig. 1), where $|\beta_1| = \cdots = |\beta_j| = |\beta|$. We get $(x_1\mu(x_1))^{i_{k+1}-i_k}\alpha_{k+1} = \alpha_k\mu(x_2\mu(x_2)) = \alpha_k\beta w\alpha$ for any $1 \le k \le j-1$ by substituting $\mu(x_2\mu(x_2))^k = u(x_1\mu(x_1))^{i_k}\alpha_k$ into $\mu(x_2\mu(x_2))^{k+1} = u(x_1\mu(x_1))^{i_{k+1}}\alpha_{k+1}$. Note that $i_{k+1} \ge i_k$; otherwise, we would have $(x_1\mu(x_1))^{i_k-i_{k+1}}\alpha_k\mu(x_2\mu(x_2)) = \alpha_{k+1}$, which is a contradiction with the fact that $|x_1\mu(x_1)| \ge |\alpha_{k+1}|$. Since $|\alpha_k\beta| \le |x_1\mu(x_1)|, \alpha_k\beta \in Pref(x_1\mu(x_1))$. Even if $i_{k+1} - i_k = 0, \alpha_k\beta \in Pref(\alpha_{k+1}) \subseteq Pref(x_1\mu(x_1))$. Thus, there exists an integer $1 \le j' \le j$ such that $\beta_1 = \cdots = \beta_{j'-1} = \beta_{j'+1} = \cdots = \beta_j = \beta$, that is, $x_1\mu(x_1) = (\alpha\beta)^{j'-1}\alpha\beta_{j'}(\alpha\beta)^{j-j'}$. If j' < j, then there exist k_1, k_2 such that $\alpha_{k_1} = (\alpha\beta)^{j'-1}\alpha\beta_{j'}\alpha$ and $\alpha_{k_2} = \alpha(\beta\alpha)^k$ for some $k \ge 1$. Clearly, $|\alpha_{k_1}|, |\alpha_{k_2}| \ge \ell$. By the original definitions of α_{k_1} and α_{k_2} , they must share the suffix of length ℓ . Hence, $\beta_{j'} = \beta$. If j' = j, then we claim that for all $1 \le k < j$ and some $w \in \Sigma^{\leq 2\ell}, \alpha_k w \in Pref(x_1\mu(x_1))$ implies $w \in Pref(\mu(x_2\mu(x_2)))$. Indeed, as above we have $(x_1\mu(x_1))^{i_{k+1-i_k}}\alpha_{k+1} = \alpha_k\mu(x_2\mu(x_2))$. Since $\alpha_{k+1} \in Pref(x_1\mu(x_1))$ and $x_2\mu(x_2) \ge 2\ell$. $\alpha_k w \in Pref(\alpha_{k+1})$, and hence $w \in Pref(\mu(x_2\mu(x_2)))$. Let $\alpha_{k_1} = (\alpha\beta)^{j-3}\alpha$ and $\alpha_{k_2} = (\alpha\beta)^{j-2}\alpha$. Then $\alpha_{k_1}\beta\alpha\beta\alpha \in Pref(x_1\mu(x_1))$ implies $\beta\alpha\beta_\beta \in Pref(\mu(x_2\mu(x_2)))$. Thus, $\beta_j = \beta$. Consequently, $x_1\mu(x_1) = (\alpha\beta)^j$. Since $j \ge 3$, this contradicts the primitivity of $x_1\mu(x_1)$.

Lemma 27. Let $X \subseteq \Sigma^*$, and $Y \subseteq S_{\mu} \setminus P_{\mu}$ such that $XY = \mu(Y)X$. If there exist $m, n \ge 1$ such that $X_m Y_n = \mu(Y_n)X_m$, and $m \le \min\{\ell \mid Y_{n,\ell} \ne \emptyset\}$, then $|Y_{n,\ell}| \le 1$ holds for all $\ell \ge 1$.

Proof. Lemma 26 implies that $X_m Y_{n,\ell} = \mu(Y_{n,\ell})X_m$ for all $\ell \ge 1$. Let us consider this equation for some ℓ such that $Y_{n,\ell} \neq \emptyset$. Then for $y_1 \in Y_{n,\ell}$, there must exist $u, w \in X_m$ and $y_2 \in Y_{n,\ell}$ satisfying $uy_1 = \mu(y_2)w$. Lemma 25 enables us to say u = w because $m \le \ell$. Thus, $X_m Y_{n,\ell} = \mu(Y_{n,\ell})X_m$ is equivalent to $\forall u \in X_m, uY_{n,\ell} = \mu(Y_{n,\ell})u$. For the latter equation, Lemma 24 and the assumption $|Y_{n,\ell}| \ge 1$ make it possible to conclude $|Y_{n,\ell}| = 1$. \Box

Having proved the required lemmata, now we will prove the main results.

Proposition 28. Let $X \subseteq \Sigma^*$, and $Y \subseteq S_{\mu} \setminus P_{\mu}$ such that $XY = \mu(Y)X$. Let *n* be the length of the shortest words in *Y*. Then *X* does not contain any nonempty word which is strictly shorter than the shortest left factor of μ -twin-roots of an element of Y_n .

Proof. If there were such an element of *X*, the shortest words of *X* are shorter than any left factor of μ -twin-roots of words in *Y*. Let *u* be one of the shortest nonempty words in *X*, and let |u| = m for some $m \ge 1$. Then $XY = \mu(Y)X$ implies $X_mY_n = \mu(Y_n)X_m$. Moreover, Lemma 26 implies that $X_mY_n = \mu(Y_n)X_m$ if and only if $X_mY_{n,\ell} = \mu(Y_{n,\ell})X_m$ for all $\ell \ge 1$. Then, Lemma 27 implies $|Y_{n,\ell}| \le 1$ for all $\ell \ge 1$. Let us consider the minimum ℓ satisfying $|Y_{n,\ell}| = 1$. Such an ℓ certainly exists because $Y_n \ne \emptyset$. Let $Y_{n,\ell} = \{y\}$, where $y = (x\mu(x))^i$ for some $i \ge 1$ and $\sqrt[\mu]{y} = (x, \mu(x))$. Then, $uy = \mu(y)u$ means $u(x\mu(x))^i = \mu((x\mu(x))^i)u$. Moreover, the condition |u| < |x| results in $ux\mu(x) = \mu(x)xu$. Letting $\mu(x) = u\alpha$ for some $\alpha \in \Sigma^+$, we have $ux\mu(x) = u\alpha\mu(u)\mu(\alpha)u$, which means $x\mu(x) = \alpha \cdot \mu(u)\mu(\alpha)u = \mu(u)\mu(\alpha)u \cdot \alpha$. Since $\alpha, u \in \Sigma^+$, this is a contradiction with the primitivity of $x\mu(x)$. \Box

Corollary 29. Let $X \subseteq \Sigma^*$, and $Y \in S_{\mu} \setminus P_{\mu}$ such that $XY = \mu(Y)X$, and m, n be the lengths of the shortest words in X and in Y, respectively. If $m = \min\{\ell \mid Y_{n,\ell} \neq \emptyset\}$, then both X_m and Y_n are singletons.

Proof. It is obvious that $X_m Y_n = \mu(Y_n)X_m$ holds. Lemma 26 implies that $X_m Y_{n,\ell} = \mu(Y_{n,\ell})X_m$ for all $\ell \ge 1$. Moreover Lemma 27 implies that for all $\ell, |Y_{n,\ell}| \le 1$. If there exists $\ell' > m$ such that $|Y_{n,\ell'}| = 1$, then $X_m Y_{n,\ell'} = \mu(Y_{n,\ell'})X_m$ must hold. This contradicts Proposition 28, where X_m and $Y_{n,\ell'}$ correspond to X and Y in the proposition, respectively. Now we know that Y_n is singleton. Then Lemma 23 means that X_m is singleton. \Box

Proposition 30. Let $X \subseteq \Sigma^*$ and $Y \subseteq S_{\mu} \setminus P_{\mu}$ such that $XY = \mu(Y)X$. Let *m* and *n* be the lengths of the shortest words in *X* and *Y*, respectively. If $m = \min\{\ell \mid Y_{n,\ell} \neq \emptyset\}$, then a language which commutes with *Y* cannot contain any nonempty word which is strictly shorter than any primitive root of a word in Y_n .

Proof. Corollary 29 implies that Y_n is a singleton. Let $Y_n = \{w\}$, and let $w = (x\mu(x))^i$ for some i > 1, where $\frac{u}{w} = (x, \mu(x))$. Then from Corollary 6, we have $\sqrt{w} = x\mu(x)$. Let Z be a language which commutes with Y. Suppose the shortest word in Z, say v, is strictly shorter than \sqrt{w} . Let $|v| = \ell'$. Then $Z_{\ell'}Y_n = Y_n Z_{\ell'}$, i.e., $Z_{\ell'}w = w Z_{\ell'}$. Lemma 23 results in $|Z_{\ell'}| = 1$. Let $Z_{\ell'} = \{v\}$. Now we have vw = wv. This implies that $\sqrt{v} = \sqrt{w}$, which contradicts the fact that $|v| < |\sqrt{w}|$ and $v \neq \lambda$.

6. Conclusion

This paper generalizes the notion of f-symmetric words to an arbitrary mapping f. For an involution ι , we propose the notion of the ι -twin-roots of an ι -symmetric word, show their uniqueness, and the fact that the catenation of the ι -twinroots of a word equals its primitive root. Moreover, for a morphic or antimorphic involution δ , we prove several additional properties of twin-roots. We use these results to make steps toward solving pseudo-commutativity equations on languages.

Acknowledgements

This research was supported by The Natural Sciences and Engineering Council of Canada Discovery Grant and Canada Research Chair Award to L.K.

References

- [1] L. Adleman, Molecular computation of solutions to combinatorial problems, Science 266 (1994) 1021–1024.
- [2] N. Chomsky, M.P. Schützenberger, The algebraic theory of context-free languages, in: P. Bradford, D. Hirschberg (Eds.), Computer Programming and Formal Languages, North Holland, Amsterdam, 1963, pp. 118-161.
- [3] P.M. Cohn, Factorization in noncommuting power series rings, Proceedings of the Cambridge Philosophical Society 58 (1962) 452-464.
- [4] E. Czeizler, L. Kari, S. Seki, On a special class of primitive words, in: Proc. Mathematical Foundations of Computer Science (MFCS 2008), in: LNCS, vol. 5162, Springer, Torun, Poland, 2008, pp. 265-277.
- [5] N.J. Fine, H.S. Wilf, Uniqueness theorem for periodic functions, Proceedings of American Mathematical Society 16 (1965) 109-114.
- [6] C.C. Huang, S.S. Yu, Solutions to the language equation *LB* = *AL*, Soochow Journal of Mathematics 29 (2) (2003) 201–213.
- [7] L. Kari, K. Mahalingam, Watson-Crick conjugate and commutative words, in: M. Garzon, H. Yan (Eds.), DNA 13, in: LNCS, vol. 4848, 2008, pp. 273–283. [8] M. Lothaire, Combinatorics on Words, Cambridge University Press, 1983.
- [9] A.D. Luca, A.D. Luca, Pseudopalindrome closure operators in free monoids, Theoretical Computer Science 362 (2006) 282–300. [10] R. Lyndon, M. Schützenberger, The equation $a^M = b^N c^P$ in a free group, Michigan Mathematical Journal 9 (1962) 289–298.
- [11] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag, Berlin, Heidelberg, 1997.
- [12] S.S. Yu, Languages and Codes, in: Lecture Notes, Department of Computer Science, National Chung-Hsing University, Taichung, Taiwan, 402, 2005.