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a b s t r a c t

In this paper we generalize the notion of an ι-symmetric word, from an antimorphic
involution, to an arbitrary involution ι as follows: a nonempty word w is said to be
ι-symmetric if w = αβ = ι(βα) for some words α, β . We propose the notion of ι-
twin-roots (x, y) of an ι-symmetric wordw. We prove the existence and uniqueness of the
ι-twin-roots of an ι-symmetric word, and show that the left factor α and right factor β of
any factorization of w as w = αβ = ι(βα), can be expressed in terms of the ι-twin-roots
ofw. In addition, we show that for any involution ι, the catenation of the ι-twin-roots ofw
equals the primitive root ofw. We also provide several characterizations of the ι-twin-rots
of a word, for ι being a morphic or antimorphic involution.
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1. Introduction

Periodicity, primitivity, overlaps, and repetitions of factors play an important role in combinatorics of words, and have
been the subject of extensive studies, [8,12]. Recently, a new interpretation of these notions has emerged, motivated by
information encoding in DNA computing.
DNA computing is based on the idea that data can be encoded as biomolecules, [1], e.g., DNA strands, and molecular

biology tools can be used to transform this data to perform, e.g., arithmetic and logic operations. DNA (deoxyribonucleic
acid) is a linear chain made up of four different types of nucleotides, each consisting of a base (Adenine, Cytosine, Guanine,
or Thymine) and a sugar-phosphate unit. The sugar-phosphate units are linked together by covalent bonds to form the
backbone of the DNA single strand. Since nucleotides may differ only by their bases, a DNA strand can be viewed as simply
a word over the four-letter alphabet {A, C, G, T}. A DNA single strand has an orientation, with one end known as the 5’ end,
and the other as the 3’ end, based on their chemical properties. By convention, a word over the DNA alphabet represents
the corresponding DNA single strand in the 5’ to 3’ orientation, i.e., the word GGTTTTT stands for the DNA single strand
5’-GGTTTTT-3’. A crucial feature of DNA single strands is their Watson–Crick complementarity: A is complementary to T,
G is complementary to C, and two complementary DNA single strands with opposite orientation will bind to each other by
hydrogen bonds between their individual bases to form a stable DNA double strand with the backbones at the outside and
the bound pairs of bases lying at the inside.
Thus, in the context of DNA computing, a word u encodes the same information as its complement θ(u), where θ denotes

theWatson–Crick complementarity function, or its mathematical formalization as an arbitrary antimorphic involution. This
special feature of DNA-encoded information led to new interpretations of the concepts of repetitions and periodicity in
words, wherein u and θ(u) were considered to encode the same information. For example, [4] proposed the notion of θ-
primitive words for an antimorphic involution θ : a nonempty word w is θ-primitive iff it cannot be written in the form
w = u1u2 . . . un where ui ∈ {u, θ(u)}, n ≥ 2. Initial results concerning this special class of primitive words are promising
and include, e.g., an extension, [4], of the Fine-and-Wilf’s theorem [5].
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To return to our motivation, the proof of the extended Fine-and-Wilf’s theorem [4], as well as that of an extension of the
Lyndon–Schützenberger equation ui = vjwk in [10], to cases involving both words and their Watson–Crick complements,
pointed out the importance of investigating overlaps between the square u2 of a word u, and its complement θ(u), i.e.,
overlaps of the form u2 = vθ(u)w for some words v,w. This is an analogue of the classical situation wherein u2 overlaps
with u, i.e., u2 = vuw, which happens iff v = pi andw = pj for some i, j ≥ 1, where p is the primitive root of u.
A natural question is thus whether there is any kind of ‘root’ which characterizes overlaps between u2 and θ(u) in the

same way in which the primitive root characterizes the overlaps between u2 and u. For an arbitrary involution ι, this paper
proposes as a candidate the notion of ι-twin-roots of a word. Unlike the primitive root, the ι-twin-roots are defined only for
ι-symmetric words. A word u is ι-symmetric if u = αβ = ι(βα) for some words α, β and the connection with the overlap
problem is the following: If ι is an involution and u is an ι-symmetric word, then u2 overlaps with ι(u), i.e., u2 = αι(u)β . The
implication becomes equivalence if ι is a morphic or antimorphic involution. In this paper, we prove that an ι-symmetric
word u has unique ι-twin-roots (x, y) such that xy is the primitive root of u (i.e., u = (xy)n for some n ≥ 1). In addition,
if u = αβ = ι(βα), then α = (xy)ix, β = y(xy)n−i−1 for some i ≥ 1 (Proposition 4). Moreover, we provide several
characterizations of ι-twin-roots for the case when ι is morphic or antimorphic.
The paper is organized as follows. After basic notations, definitions and examples in Section 2, in Section 3we investigate

relationships between the primitive root and twin-roots of a word. We namely show that for an involution ι, the primitive
root of an ι-symmetric word equals the catenation of its ι-twin-roots. Furthermore, for a morphic or antimorphic involution
δ, we provide several characteristics of δ-twin-roots of words. In Section 4, we place the set of δ-symmetric words in the
Chomskyhierarchy of languages. As an application of these results, in Section 5we investigate theµ-commutativity between
languages, XY = µ(Y )X , for a morphic involution µ.

2. Preliminaries

LetΣ be a finite alphabet. A word overΣ is a finite sequence of symbols inΣ . The empty word is denoted by λ. ByΣ∗,
we denote the set of all words overΣ , andΣ+ = Σ∗ \ {λ}. For a word w ∈ Σ∗, the set of its prefixes, infixes, and suffixes
are defined as follows: Pref(w) = {u ∈ Σ+ | ∃v ∈ Σ∗, uv = w}, Inf(w) = {u ∈ Σ+ | ∃v, v′ ∈ Σ∗, vuv′ = w}, and
Suff(w) = {u ∈ Σ+ | ∃v ∈ Σ∗, vu = w}. For other notions in the formal language theory, we refer the reader to [11,12].
A word u ∈ Σ+ is said to be primitive if u = vi implies i = 1. By Q we denote the set of all primitive words. For any

nonempty word u ∈ Σ+, there is a unique primitive word p ∈ Q , which is called the primitive root of u, such that u = pn
for some n ≥ 1. The primitive root of u is denoted by

√
u.

An involution is a mapping f such that f 2 is the identity. A morphism (resp. antimorphism) f over an alphabet Σ is a
mapping such that f (uv) = f (u)f (v) (f (uv) = f (v)f (u)) for all words u, v ∈ Σ∗. We denote by f , ι,µ, θ , and δ, an arbitrary
mapping, an involution, a morphic involution, an antimorphic involution and a d-morphic involution (an involution that
is either morphic or antimorphic), respectively. Note that an involution is not always length-preserving but a d-morphic
involution is.
A palindrome is awordwhich is equal to itsmirror image. The concept of palindromeswas generalized to θ-palindromes,

[7,9], where θ is an arbitrary antimorphic involution: a wordw is called a θ-palindrome ifw = θ(w).
This definition can be generalized as follows: For an arbitrary mapping f onΣ∗, a wordw ∈ Σ∗ is called a f -palindrome

ifw = f (w). We denote by Pf the set of all f -palindromes overΣ∗. The name f -palindrome serves as a reminder of the fact
that, in the particular casewhen f is themirror-image function, i.e., the identity function onΣ extended to an antimorphism
ofΣ∗, an f -palindrome is an ordinary palindrome. An additional reason for this choice of term was the fact that, in biology,
the term ‘‘palindrome’’ is routinely used to describe DNA strings uwith the property that θ(u) = u, where θ is theWatson–
Crick complementarity function. In the case when f is an arbitrary function on Σ∗, what we here call an f -palindrome is
simply a fixed point for the function f .

Lemma 1. Let u ∈ Σ+ and δ be a d-morphic involution. Then u ∈ Pδ if and only if
√
u ∈ Pδ .

Proof. Note that δ(
√
un) = δ(

√
u)n for a d-morphic involution δ. If u ∈ Pδ , then we have

√
un = δ(

√
un). This means that

√
un = δ(

√
u)n. Since δ is length-preserving,

√
u = δ(

√
u). The opposite direction can be proved in a similar way. �

The θ-symmetric property of a word was introduced in [9] for antimorphic involutions θ . In [9], a word is said to be
θ-symmetric if it can be written as a product of two θ-palindromes. We extend this notion to the f -symmetric property,
where f is an arbitrary mapping. For a mapping f , a nonempty word w ∈ Σ+ is f -symmetric if w = αβ = f (βα) for
some α ∈ Σ+ and β ∈ Σ∗. Our definition is a generalization of the definition in [9]. Indeed, when f is an antimorphic
involution, w = αβ = f (βα) = f (α)f (β) implies α, β ∈ Pf . For an f -symmetric word w, we call a pair (α, β) such that
w = αβ = f (βα) an f-symmetric factorization of w. Given an f -symmetric factorization (α, β) of a word, α is called its
left factor and β is called its right factor. We denote by Sf the set of all f -symmetric words overΣ∗. We have the following
observation on the inclusion relation between Pf and Sf .

Proposition 2. For a mapping f onΣ∗, Pf ⊆ Sf .
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3. Twin-roots and primitive roots

Given an involution ι, in this section we define the notion of ι-twin-roots of an ι-symmetric word u with respect to ι.
We prove that any ι-symmetric word u has unique ι-twin roots. We show that the right and left factors of any ι-symmetric
factorization of u as u = αβ = ι(βα) can all be expressed in terms of the twin-roots of u with respect to ι. Moreover, we
show that the catenation of the twin-roots of an ι-symmetric word uwith respect to ι equals the primitive root of u. We also
provide several other properties of twin-roots, for the particular case of d-morphic involutions.
We begin by recalling a theorem from [6] on language equation of the type Xu = vX , whose corollary will be used for

finding the ‘‘twin-roots’’ of an ι-symmetric word.

Corollary 3 ([6]). Let u, v, w ∈ Σ+. If uw = wv, then there uniquely exist two words x, y ∈ Σ∗ with xy ∈ Q such that
u = (xy)i, v = (yx)i, andw = (xy)jx for some i ≥ 1 and j ≥ 0.

Proposition 4. Let ι be an involution onΣ∗ and u be an ι-symmetric word. Then there uniquely exist two words x, y ∈ Σ∗ such
that u = (xy)i for some i ≥ 1 with xy ∈ Q , and if u = αβ = ι(βα) for some α, β ∈ Σ∗, then there exists k ≥ 0 such that
α = (xy)i−k−1x and β = y(xy)k.

Proof. Given that u is ι-symmetric and (α, β) is an ι-symmetric factorization of u. It is easy to see that βu = ι(u)β holds.
Then from Corollary 3, there exist two words x, y ∈ Σ∗ such that xy ∈ Q , u = (xy)i, ι(u) = (yx)i, and β = y(xy)k for some
k ≥ 0. Since u = αβ = (xy)i, we have α = (xy)i−k−1x. Now we have to prove that such (x, y) does not depend on the
choice of (α, β). Suppose there were an ι-symmetric factorization (α′, β ′) of u for which x′y′ ∈ Q , u = (x′y′)i, ι(u) = (y′x′)i,
α′ = (x′y′)i−j−1x′, and β ′ = y′(x′y′)j for some 0 ≤ j < i and x′, y′ ∈ Σ∗ such that (x, y) 6= (x′, y′). Then we have xy = x′y′
and yx = y′x′, which contradicts the primitivity of xy. �

The preceding result shows that, if u is ι-symmetric, then its left factor and right factor can bewritten in terms of a unique
pair (x, y). We call (x, y) the twin-roots of u with respect to ι, or shortly ι-twin-roots of u. We denote the ι-twin-roots of u
by ι
√
u. Note that x 6= y and we can assume that x cannot be empty whereas y can. Proposition 4 has the following two

consequences.

Corollary 5. Let ι be an involution onΣ∗ and u be an ι-symmetric word. Then the number of ι-symmetric factorizations of u is n
for some n ≥ 1 if and only if u = (

√
u)n.

Corollary 6. Let ι be an involution onΣ∗ and u be an ι-symmetric word such that ι
√
u = (x, y). Then the primitive root of u is xy.

Corollary 6 is the first result that relates the notion of the primitive root of an ι-symmetric word to ι-twin-roots. For the
particular case of a d-morphic involution δ, the primitive root and the δ-twin-roots are related more strongly. Firstly, we
make a connection between the two elements of δ-twin-roots.

Lemma 7. Let δ be a d-morphic involution onΣ∗, and u be a δ-symmetric word with δ-twin-roots (x, y). Then xy = δ(yx).

Proof. Let u = (xy)i = αβ = δ(βα) for some i ≥ 1 and α, β ∈ Σ∗. Due to Proposition 4, α = (xy)kx and β = y(xy)i−k−1 for
some 0 ≤ k < i. Substituting these into (xy)i = δ(βα) results in (xy)i = δ((yx)i). Since δ is either morphic or antimorphic,
we have xy = δ(yx). �

Proposition 8. Let δ be a d-morphic involution onΣ∗, and u, v be δ-symmetric words. Then
√
u =
√
v if and only if δ

√
u = δ
√
v.

Proof. (If) For δ
√
u = δ

√
v = (x, y), Corollary 6 implies

√
u =

√
v = xy. (Only if) Let δ

√
u = (x, y) and δ

√
v = (x′, y′).

Corollary 6 implies
√
u = xy and

√
v = x′y′. Let p =

√
u =

√
v and we have p = xy = x′y′. From Lemma 7, both

(x, y) and (x′, y′) are δ-symmetric factorizations of p. If (x, y) 6= (x′, y′), due to Corollary 5, p = (
√
p)n for some n ≥ 2, a

contradiction. �

Proposition 9. Let δ be a d-morphic involution onΣ∗, and u be a δ-symmetric word such that δ
√
u = (x, y).

(1) If δ is antimorphic, then both x and y are δ-palindromes,
(2) If δ is morphic, then either (i) x is a δ-palindrome and y = λ, or (ii) x is not a δ-palindrome and y = δ(x).

Proof. Due to Lemma 7, we have xy = δ(yx). If δ is antimorphic, then thismeans that xy = δ(x)δ(y), and hence x = δ(x) and
y = δ(y). If δ is morphic, then xy = δ(y)δ(x). If y = λ, then we have x = δ(x). Otherwise, we have three cases depending on
the lengths of x and y. If they have the same length, then y = δ(x). The primitivity of xy forces x not to be a δ-palindrome.
If |x| < |y|, then y = y1y2 for some y1, y2 ∈ Σ+ such that δ(y) = xy1 and y2 = δ(x). Then xy = xδ(x)δ(y1) = δ(y1)xδ(x),
which is a contradiction with xy ∈ Q . The case when |y| < |x| can be proved by symmetry. �

Next we consider the δ-twin-roots of a δ-palindrome; indeed δ-palindromes are δ-symmetric (Proposition 2), and hence
have δ-twin-roots. The δ-twin-roots of δ-palindromes have the following property.

Lemma 10. Let δ be a d-morphic involution and u be a δ-symmetric word such that δ
√
u = (x, y) for some x ∈ Σ+ and y ∈ Σ∗.

Then u is a δ-palindrome if and only if x is a δ-palindrome and y = λ.
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Proof. (If) Since y = λ, u = xi for some i ≥ 1. Then δ(u) = δ(xi) = δ(x)i = xi, and hence u ∈ Pδ . (Only if) First we consider
the case when δ is antimorphic. From Proposition 9, x, y ∈ Pδ . Suppose y 6= λ. Since u ∈ Pδ , Lemma 1 implies

√
u ∈ Pδ ,

and hence xy = δ(xy) = δ(y)δ(x) = yx. This means that nonempty words x and y commute, a contradiction with xy ∈ Q .
Next we consider the case of δ being morphic. Since u is a δ-palindrome, any letter a from u has the palindrome property,
i.e., δ(a) = a. Then all prefixes of u satisfy the palindrome property so that x = δ(x). Proposition 9 implies either y = λ or
y = δ(x), but the latter, with

√
u = xy, leads to

√
u = x2, a contradiction. �

Note that the notion of ι-symmetry and ι-twin-roots of a word are dependent on the involution ι under consideration.
Thus, for example, a word u may be ι1-symmetric and not ι2-symmetric, and its twin-roots might be different depending
on the involution considered. The following two examples show that there exist words u and morphic involutions µ1 and
µ2 such that the µ1-twin-roots of u are different from µ2-twin-roots of u, and the same situation can be found for the
antimorphic case.

Example 11. Let u = ATTAATTA, µ1 be the identity on Σ extended to a morphism, and µ2 be the morphic involution
such that µ2(A) = T and µ2(T) = A. Then u is both µ1-symmetric and µ2-symmetric. Indeed, u = ATTA · ATTA =
µ1(ATTA)µ1(ATTA), and u = AT · TAATTA = µ2(TAATTA)µ2(AT). The µ1-symmetric property of u implies that µ1

√
u =

(ATTA, λ), and theµ2-symmetric property of u implies µ2
√
u = (AT, TA). We can easily check that

√
u = ATTA ·λ = AT ·TA.

Example 12. Let u = TAAATTTAAATT, mi be the identity on Σ extended to an antimorphism, namely the well-known
mirror-image mapping, and θ be the antimorphic involution such that θ(A) = T and θ(T) = A. We can split u into two
palindromes TAAAT and TTAAATT so that u is mi-symmetric. By the same token, u is a product of two θ-palindromes
TAAATTTA and AATT, and hence θ-symmetric. We have that mi

√
u = (TAAAT, T) and θ

√
u = (TA, AATT). Note that√

u = TAAAT · T = TA · AATT holds.

The last example shows that it is possible to find a word u, and morphic and antimorphic involutions µ and θ , such that
the µ-twin-roots of u and the θ-twin-roots of u are distinct.

Example 13. Let u = AACGTTGC. µ and θ be morphic and antimorphic involutions, respectively, which map A to T, C to G,
and vice versa. Then u = µ(TTGC)µ(AACG) = θ(AACGTT)θ(GC) so that u is both µ-symmetric and θ-symmetric. We have
that µ
√
u = (AACG, TTGC) and θ

√
u = (AACGTT, GC). Moreover

√
u = AACG · TTGC = AACGTT · GC.

4. The set of symmetric words in the Chomsky hierarchy

In this section we consider the classification of the language Sµ of the µ-symmetric words with respect to a morphic
involution µ, and Sθ of the θ-symmetric words with respect to an antimorphic involution θ , in the Chomsky hierarchy,
[2,11]. For a morphic involutionµ, we show that Pµ, the set of allµ-palindromes, is regular (Proposition 14). Unless empty,
the set Sµ\Pµ of allµ-symmetric but non-µ-palindromicwords, is not context-free (Proposition 16) but is context-sensitive
(Proposition 19). As a corollary of these results we show that, unless empty, the set Sµ of allµ-symmetric words is context-
sensitive (Corollary 20), but not context-free (Corollary 17). In contrast, for an antimorphic involution θ , the set of all θ-
symmetric words turns out to be context-free (Proposition 21).

Proposition 14. Let µ be a morphic involution onΣ∗. Then Pµ is regular.

Proof. ForΣp = {a ∈ Σ | a = µ(a)}, Pµ = Σ∗p , which is regular. �

Next we consider Sµ \ Pµ. If c = µ(c) holds for all letters c ∈ Σ , then Σ∗ = Pµ, that is, Sµ \ Pµ is empty. Therefore,
we assume the existence of a character c ∈ Σ satisfying c 6= µ(c). Under this assumption, we show that Sµ \ Pµ is not
context-free but context-sensitive.

Lemma 15. Let µ be a morphic involution onΣ∗. If there is c ∈ Σ such that c 6= µ(c), then Sµ \ Pµ is infinite.

Proof. This is clear from the fact that (cµ(c))k ∈ Sµ \ Pµ for all k ≥ 1. �

Proposition 16. Let µ be a morphic involution onΣ∗. IfΣ contains a character c ∈ Σ satisfying c 6= µ(c), then Sµ \ Pµ is not
context-free.

Proof. Lemma 15 implies that Sµ \ Pµ is not finite. Suppose Sµ \ Pµ were context-free. Then there is an integer n given to us
by the pumping lemma. Let us choose z = anµ(a)nanµ(a)n for some a ∈ Σ satisfying a 6= µ(a). We may write z = uvwxy
subject to the usual constraints (1) |vwx| ≤ n, (2) vx 6= λ, and (3) for all i ≥ 0, zi = uviwxiy ∈ Sµ \ Pµ.
Note that for any w ∈ Sµ \ Pµ and any a ∈ Σ satisfying a 6= µ(a), the number of occurrences of a in w should be

equal to that of µ(a) inw. Therefore, if vx contained different numbers of a’s and µ(a)’s, z0 = uwywould not be a member
of Sµ \ Pµ. Suppose vwx straddles the first block of a’s and the first block of µ(a)’s of z, and vx consists of k a’s and k
µ(a)’s for some k > 0. Note that 2k < n because |vx| ≤ |vwx| ≤ n. Then z0 = an−kµ(a)n−kanµ(a)n, and z0 ∈ Sµ \ Pµ
means that there exist γ 6∈ Pµ and an integer m ≥ 1 such that z0 = (γµ(γ ))m. Thus, µ(γ ) ∈ Σ∗µ(a), i.e., γ ∈ Σ∗a.
This implies that the last block of µ(a) of z0 is a suffix of the last µ(γ ) of z0, and hence |γ | = |µ(γ )| ≥ n. As a result,
an−kµ(a)k ∈ Pref(γ ), i.e., µ(a)n−kak ∈ Pref(µ(γ )). Since a 6= µ(a), we have µ(γ ) = µ(a)n−kakβµ(a)n for some β ∈ Σ∗.
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This implies |µ(γ )| ≥ 2n. On the other hand, |z0| = 4n−2k, and hence |µ(γ )| ≤ 2n−k. Nowwe reached the contradiction.
Even if we suppose that vwx straddles the second block of a’s and the second block of µ(a)’s of z, we would reach the same
contradiction. Finally, suppose that vwx were a substring of the first block of µ(a)’s and the second block of a’s of z. Then
z0 = anµ(a)n−kan−kµ(a)n = (γµ(γ ))m for some m ≥ 1. As proved above, µ(a)n ∈ Suff(µ(γ )), and this is equivalent to
an ∈ Suff(γ ). Since z0 contains the n consecutive a’s only as the prefix an, we have γ = an, i.e., µ(γ ) = µ(a)n. However,
the prefix an is followed by at most n−k occurrences ofµ(a) and k ≥ 1. This is a contradiction. Consequently, Sµ \ Pµ is not
context-free. �

The proof of Proposition 16 suggests that for an alphabet Σ containing a character c satisfying c 6= µ(c), Sµ is not
context-free either.

Corollary 17. Letµ be a morphic involution onΣ∗. IfΣ contains a character c ∈ Σ satisfying c 6= µ(c), then Sµ is not context-
free.

Nextwe prove that Sµ\Pµ is context-sensitive.Wewill construct a type-0 grammar and prove that the grammar is indeed
a context-sensitive grammar. For this purpose, the workspace theorem is employed, which requires a few terminologies:
Let G = (N, T , S, P) be a grammar and consider a derivation D according to G like D : S = w0 ⇒ w1 ⇒ · · · ⇒ wn = w.
The workspace of w by D is defined as WSG(w,D) = max{|wi| | 0 ≤ i ≤ n}. The workspace of w is defined as
WSG(w) = min{WSG(w,D) | D is a derivation ofw}.

Theorem 18 (Workspace Theorem [11]). Let G be a type-0 grammar. If there is a nonnegative integer k such thatWSG(w) ≤ k|w|
for all nonempty wordsw ∈ L(G), then L(G) is context-sensitive.

Proposition 19. Let µ be a morphic involution on Σ∗. If Σ contains a character c ∈ Σ satisfying c 6= µ(c), then Sµ \ Pµ is
context-sensitive.

Proof. We provide a type-0 grammar which generates a language equivalent to Sµ \ Pµ. Let G = (N,Σ, P, S), where
N = {S, Ẑ,←−Z , X̂i, X̂m, Y ,

←−L ,#} ∪
⋃
a∈Σ {
−→Xa ,
−→Ca }, the set of nonterminal symbols, and P is the set of production rules given

below. First off, this grammar creates αµ(α) for α ∈ Σ∗ that contains a character c ∈ Σ satisfying c 6= µ(c). The 1–7th
rules of the following list of P achieve this task. Secondly, 5th and 10–18th rules copy αµ(α) at arbitrary times so that the
resulting word is (αµ(α))i for some i ≥ 0.

1. S → #ẐaX̂i
−→Xa Y# ∀a ∈ Σ,

2. S → #ẐbX̂m
−→Xb Y# ∀b ∈ Σ such that b 6= µ(b),

3. −→Xa c → c−→Xa ∀a, c ∈ Σ,
4. −→Xa Y →

←−L µ(a)Y ∀a ∈ Σ,
5. c←−L →

←−L c ∀c ∈ Σ,
6. X̂i

←−L → aX̂i
−→Xa ∀a ∈ Σ,

7. X̂i
←−L → bX̂m

−→Xb ∀b ∈ Σ such that b 6= µ(b),
8. X̂m

←−L → aX̂m
−→Xa ∀a ∈ Σ,

9. X̂m
←−L →

←−L
10. Ẑa←−L → aẐ−→Ca ∀a ∈ Σ,
11. −→Ca c → c−→Ca ∀a, c ∈ Σ,
12. −→Ca Y → Y−→Ca ∀a ∈ Σ,
13. −→Ca# →

←−L a# ∀a ∈ Σ,
14. Y←−L →

←−L Y ,
15. ẐY←−L →

←−Z ←−L Y
16. ẐY←−L → λ

17. c←−Z →
←−Z c ∀c ∈ Σ,

18. #←−Z → #Ẑ,
19. # → λ.

This grammar works in the following manner. After the 1st or 6th rule generates a terminal symbol a ∈ Σ , the 3rd and
4th rules deliver information of the symbol to Y and generateµ(a) just before Y , and by the 5th rule, the header←−L go back
to X̂i. This process is repeated until a character b ∈ Σ satisfying b 6= µ(b) is generated, which is followed by changing X̂i
to X̂m and generating µ(b) just before Y . Now the grammar may continue the a-θ(a) generating process or shift to a copy
phase (9th rule X̂m

←−L →←−L ). From now on, whenever the a-µ(a) process ends, the grammar can do this choice. Just after
using the 9th rule X̂m

←−L → ←−L , the sentential form of this derivation is Ẑα←−L µ(α)Y for some α ∈ Σ+ which contains
at least one character b ∈ Σ satisfying b 6= µ(b). The 5th and 10–18th rules copy αµ(α) at the end of sentential form.
Just after coping αµ(α), the sentential form αµ(α)ẐY←−L (αµ(α))m appears so that if the 15th rule is applied, then another
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αµ(α) is copied; otherwise the derivation terminates. Therefore, a word w derived by this grammar G can be represented
as (αµ(α))n for some n ≥ 1, and hencew ∈ Sµ. In addition, G generates only non-θ-palindromic word so thatw ∈ Sµ \ Pµ.
Thus, L(G) ⊆ Sµ \ Pµ. Conversely, if w ∈ Sµ \ Pµ, then it has the µ-twin-roots µ

√
w = (x, y) and w = (xy)n for some

n ≥ 1. Since y = µ(x), w can be generated by G. Therefore, Sµ \ Pµ ⊆ L(G). Consequently, L(G) = Sµ \ Pµ. Furthermore,
this grammar satisfies the workspace theorem (Theorem 18). Any sentential form to derive a word cannot be longer than
|w| + c for some constant c ≥ 0. Therefore, L(G) is context-sensitive. �

Corollary 20. Let µ be a morphic involution on Σ∗. If Σ contains a character c ∈ Σ satisfying c 6= µ(c), then Sµ is context-
sensitive.

Finally we show that the set of all θ-symmetric words for an antimorphic involution θ is context-free.

Proposition 21. For an antimorphic involution θ , Sθ is context-free.

Proof. It is known that Pθ is context-free and the family of context-free languages is closed under catenation. Since
Sθ = Pθ · Pθ , Sθ is context-free. �

5. On the pseudo-commutativity of languages

We conclude this paper with an application of the results obtained in Section 3 to the µ-commutativity of languages for
a morphic involution µ. For two languages X, Y ⊆ Σ∗, X is said to µ-commute with Y if XY = µ(Y )X holds.

Example 22. LetΣ = {a, b} and µ be a morphic involution such that µ(a) = b and µ(b) = a. For X = {ab(baab)i | i ≥ 0}
and Y = {(baab)j | j ≥ 1}, XY = µ(Y )X holds.

In this section we investigate languages X which µ-commute with a set Y of µ-symmetric words. When analyzing such
pseudo-commutativity equations, the first step is to investigate equations wherein the set of the shortest words in X µ-
commutes with the set of the shortest words of Y . (In [3], the author used this strategy to find a solution to the classical
commutativity of formal power series, result known as Cohn’s theorem.) For n ≥ 0, by Xn we denote the set of all words in
X of length n, i.e., Xn = {w ∈ X | |w| = n}. Let m and n be the lengths of the shortest words in X and Y , respectively. Then
XY = µ(Y )X implies XmYn = µ(Yn)Xm. The main contribution of this section is to use results from Section 3 to prove that
X cannot contain any word shorter than the shortest left factor of all µ-twin-roots of words in Yn (Proposition 28). Its proof
requires several results, e.g., Lemmata 25–27.

Lemma 23 ([12]). Let u, v ∈ Σ+ and X ⊆ Σ∗. If X is not empty and Xu = vX holds, then |Xn| ≤ 1 for all n ∈ N0.

Lemma 24. Let u, v ∈ Σ+ and X ⊆ Σ∗. If X is not empty and uX = µ(X)v holds, then |Xn| ≤ 1 for all n ∈ N0.

Let X ⊆ Σ∗, Y ⊆ Sµ \ Pµ such that XY = µ(Y )X , and n be the length of the shortest words in Y . For n ≥ 1, let
Yn,` = {y ∈ Yn | µ

√
y = (x, µ(x)), |x| = `}. Informally speaking, Yn,` is a set of words in Y of length n having the µ-twin-

roots whose left factor is of length `.

Lemma 25. Let Y ⊆ Sµ \ Pµ, y1, y2 ∈ Yn,` for some n, ` ≥ 1, and u, w ∈ Σ∗. If uy1 = µ(y2)w and |u|, |w| ≤ `, then u = w.

Proof. Since |y1| = |y2| = n, we have |u| = |w|. Let y1 = (x1µ(x1))n/2` and y2 = (x2µ(x2))n/2`, where µ
√
y1 = (x1, µ(x1))

and µ
√
y2 = (x2, µ(x2)) for some x1, x2 ∈ Σ+. Nowwe have u(x1µ(x1))n/2` = µ(x2µ(x2))n/2`w. This equation, with |u| ≤ `,

implies that ux1µ(x1) = µ(x2µ(x2))w. Then we have µ(x2) = uα for some α ∈ Σ∗, and ux1µ(x1) = uαµ(u)µ(α)w. This
means x1 = αµ(u) and µ(x1) = µ(α)w, which conclude u = w. �

Lemma 26. Let X ⊆ Σ∗, and Y ⊆ Sµ \ Pµ such that XY = µ(Y )X. For integers m, n ≥ 1 such that XmYn = µ(Yn)Xm and
m ≤ min{` | Yn,` 6= ∅}, we have XmYn,` = µ(Yn,`)Xm for all ` ≥ 1.

Proof. Let y1 ∈ Yn such that y1 = (x1µ(x1))i for some i ≥ 1, where µ
√
y1 = (x1, µ(x1)). Since XmYn = µ(Yn)Xm holds, there

exist u, v ∈ Xm and y2 ∈ Yn satisfying uy1 = µ(y2)v. When y2 = (x2µ(x2))j for some j ≥ 1, where µ
√
y2 = (x2, µ(x2)), we

will show that i = j.
Suppose i 6= j. We only have to consider the case where i and j are relatively prime. The symmetry makes it possible

to assume i < j, and we consider three cases: (1) i = 1 and j is even; (2) i = 1 and j is odd; and (3) i, j ≥ 2. Firstly,
we consider the case (1), where we have ux1µ(x1) = (µ(x2)x2)jv. Since |u| ≤ |x1|, |x2|, we can let ux1 = (µ(x2)x2)j/2α
and αµ(x1) = (µ(x2)x2)j/2v for some α ∈ Σ∗. Note that |α| = |u| = |v| because |x1µ(x1)| = |(µ(x2)x2)j|. Since
|u| ≤ |x2|, let µ(x2) = uβ for some β ∈ Σ∗. Then the former of preceding equations implies x1 = βx2(µ(x2)x2)j/2−1α.
Substituting these into the latter equation gives αµ(β)µ(x2)(x2µ(x2))j/2−1µ(α) = uβx2(µ(x2)x2)j/2−1v. This provides us
with x2 = µ(x2), which contradicts x2 6∈ Pµ. Case (2) is that i = 1 and j is odd. In a similar way as the preceding case,
let ux1 = (µ(x2)x2)(j−1)/2µ(x2)α and αµ(x1) = x2(µ(x2)x2)(j−1)/2v for some α ∈ Σ∗. Since |u| ≤ |x2|, the first equation
implies that µ(x2) = uβ for some β ∈ Σ∗. Then substituting this into the second equation results in α = µ(u). By the
same token, we have α = µ(v), and hence u = v. Therefore, ux1µ(x1) = (µ(x2)x2)ju = uβµ(u)µ(β)(uβµ(u)µ(β))j−1u =
u(βµ(u)µ(β)u)j. Thus, x1µ(x1) = (βµ(u)µ(β)u)j, which contradicts the primitivity of x1µ(x1) because the assumption
that j is odd and i < j implies j ≥ 3.
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Fig. 1. It is not always the case that |α1| < |α2| < · · · < |αj|. However, we can say that for any k1, k2 , if k1 6= k2 , then |αk1 | 6= |αk2 |.

What remains now is the case (3) where i, j ≥ 2 are relatively prime. Since n = i · |x1µ(x1)| = j · |x2µ(x2)|, the
relative primeness between i and j means that |x1µ(x1)| = j` and |x2µ(x2)| = i` for some ` ≥ 1. For all 1 ≤ k ≤ j,
u(x1µ(x1))ikαk = µ(x2µ(x2))k for some 0 ≤ ik ≤ i and αk ∈ Pref(x1µ(x1)). We claim that for some `′ satisfying 0 ≤ `′ < `,
there exists a 1-to-1 correspondence between {|α1|, . . . , |αj|} and {0 + `′, ` + `′, 2` + `′, . . . , (j− 1)` + `′}. Indeed,
u(x1µ(x1))ikαk = µ(x2µ(x2))k implies |u|+ ikj`+|αk| = k|x2µ(x2)|. Then, |αk| = k|x2µ(x2)|− ikj`−|u| = (ik− ikj)`−|u|.
Thus, |αk| = −|u| (mod `). We can easily check that if there exist 1 ≤ k1, k2 ≤ j satisfying ik1 − ik1 j = ik2 − ik2 j, then
k1 = k2 (mod j) because i and j are relatively prime. As a result, ∪k=jk=1{ik − ikj (mod j)} = {0, 1, . . . , j − 1}. By letting
`′ = −|u| (mod `), the existence of the 1-to-1 correspondence has been proved.
Since `′ < ` and i` = |x2µ(x2)|, let µ(x2µ(x2)) = βwα for some β,w, α ∈ Σ∗ such that |β| = ` − `′, |w| = (i − 1)`,

and |α| = `′. Then u(x1µ(x1))ikαk = µ(x2µ(x2))k implies that for all k, α ∈ Suff(αk). Recall that for all k, αk ∈ Pref(x1µ(x1)).
Then, with the 1-to-1 correspondence, we can say thatα appears on x1µ(x1) at even intervals. Let x1µ(x1) = αβ1αβ2 · · ·αβj
(see Fig. 1), where |β1| = · · · = |βj| = |β|. We get (x1µ(x1))ik+1−ikαk+1 = αkµ(x2µ(x2)) = αkβwα for any 1 ≤ k ≤ j−1
by substituting µ(x2µ(x2))k = u(x1µ(x1))ikαk into µ(x2µ(x2))k+1 = u(x1µ(x1))ik+1αk+1. Note that ik+1 ≥ ik; otherwise,
we would have (x1µ(x1))ik−ik+1αkµ(x2µ(x2)) = αk+1, which is a contradiction with the fact that |x1µ(x1)| ≥ |αk+1|. Since
|αkβ| ≤ |x1µ(x1)|, αkβ ∈ Pref(x1µ(x1)). Even if ik+1 − ik = 0, αkβ ∈ Pref(αk+1) ⊆ Pref(x1µ(x1)). Thus, there exists an
integer 1 ≤ j′ ≤ j such that β1 = · · · = βj′−1 = βj′+1 = · · · = βj = β , that is, x1µ(x1) = (αβ)j

′
−1αβj′(αβ)

j−j′ . If
j′ < j, then there exist k1, k2 such that αk1 = (αβ)j

′
−1αβj′α and αk2 = α(βα)k for some k ≥ 1. Clearly, |αk1 |, |αk2 | ≥ `.

By the original definitions of αk1 and αk2 , they must share the suffix of length `. Hence, βj′ = β . If j′ = j, then we claim
that for all 1 ≤ k < j and some w ∈ Σ≤2`, αkw ∈ Pref(x1µ(x1)) implies w ∈ Pref(µ(x2µ(x2))). Indeed, as above we
have (x1µ(x1))ik+1−ikαk+1 = αkµ(x2µ(x2)). If ik+1 − ik ≥ 1, then this means that αkw ∈ Pref(αkµ(x2µ(x2))), and hence
w ∈ Pref(µ(x2µ(x2))); otherwise, αk+1 = αkµ(x2µ(x2)). Since αk+1 ∈ Pref(x1µ(x1)) and x2µ(x2) ≥ 2`, αkw ∈ Pref(αk+1),
and hence w ∈ Pref(µ(x2µ(x2))). Let αk1 = (αβ)j−3α and αk2 = (αβ)j−2α. Then αk1βαβα ∈ Pref(x1µ(x1)) implies
βαβα ∈ Pref(µ(x2µ(x2))). By the same token, αk2βαβj = x1µ(x1) implies βαβj ∈ Pref(µ(x2µ(x2))). Thus, βj = β .
Consequently, x1µ(x1) = (αβ)j. Since j ≥ 3, this contradicts the primitivity of x1µ(x1). �

Lemma 27. Let X ⊆ Σ∗, and Y ⊆ Sµ \ Pµ such that XY = µ(Y )X. If there exist m, n ≥ 1 such that XmYn = µ(Yn)Xm, and
m ≤ min{` | Yn,` 6= ∅}, then |Yn,`| ≤ 1 holds for all ` ≥ 1.

Proof. Lemma 26 implies that XmYn,` = µ(Yn,`)Xm for all ` ≥ 1. Let us consider this equation for some ` such that Yn,` 6= ∅.
Then for y1 ∈ Yn,`, there must exist u, w ∈ Xm and y2 ∈ Yn,` satisfying uy1 = µ(y2)w. Lemma 25 enables us to say u = w
because m ≤ `. Thus, XmYn,` = µ(Yn,`)Xm is equivalent to ∀u ∈ Xm, uYn,` = µ(Yn,`)u. For the latter equation, Lemma 24
and the assumption |Yn,`| ≥ 1 make it possible to conclude |Yn,`| = 1. �

Having proved the required lemmata, now we will prove the main results.

Proposition 28. Let X ⊆ Σ∗, and Y ⊆ Sµ \ Pµ such that XY = µ(Y )X. Let n be the length of the shortest words in Y . Then X
does not contain any nonempty word which is strictly shorter than the shortest left factor of µ-twin-roots of an element of Yn.

Proof. If there were such an element of X , the shortest words of X are shorter than any left factor of µ-twin-roots of words
in Y . Let u be one of the shortest nonempty words in X , and let |u| = m for some m ≥ 1. Then XY = µ(Y )X implies
XmYn = µ(Yn)Xm. Moreover, Lemma 26 implies that XmYn = µ(Yn)Xm if and only if XmYn,` = µ(Yn,`)Xm for all ` ≥ 1.
Then, Lemma 27 implies |Yn,`| ≤ 1 for all ` ≥ 1. Let us consider the minimum ` satisfying |Yn,`| = 1. Such an ` certainly
exists because Yn 6= ∅. Let Yn,` = {y}, where y = (xµ(x))i for some i ≥ 1 and µ

√
y = (x, µ(x)). Then, uy = µ(y)u means

u(xµ(x))i = µ((xµ(x))i)u. Moreover, the condition |u| < |x| results in uxµ(x) = µ(x)xu. Letting µ(x) = uα for some
α ∈ Σ+, we have uxµ(x) = uαµ(u)µ(α)u, which means xµ(x) = α · µ(u)µ(α)u = µ(u)µ(α)u · α. Since α, u ∈ Σ+, this
is a contradiction with the primitivity of xµ(x). �

Corollary 29. Let X ⊆ Σ∗, and Y ∈ Sµ \ Pµ such that XY = µ(Y )X, and m, n be the lengths of the shortest words in X and in
Y , respectively. If m = min{` | Yn,` 6= ∅}, then both Xm and Yn are singletons.

Proof. It is obvious that XmYn = µ(Yn)Xm holds. Lemma 26 implies that XmYn,` = µ(Yn,`)Xm for all ` ≥ 1. Moreover
Lemma 27 implies that for all `, |Yn,`| ≤ 1. If there exists `′ > m such that |Yn,`′ | = 1, then XmYn,`′ = µ(Yn,`′)Xm must hold.
This contradicts Proposition 28, where Xm and Yn,`′ correspond to X and Y in the proposition, respectively. Now we know
that Yn is singleton. Then Lemma 23 means that Xm is singleton. �
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Proposition 30. Let X ⊆ Σ∗ and Y ⊆ Sµ \ Pµ such that XY = µ(Y )X. Let m and n be the lengths of the shortest words in X and
Y , respectively. If m = min{` | Yn,` 6= ∅}, then a language which commutes with Y cannot contain any nonempty word which is
strictly shorter than any primitive root of a word in Yn.

Proof. Corollary 29 implies that Yn is a singleton. Let Yn = {w}, and letw = (xµ(x))i for some i ≥ 1,where µ
√
w = (x, µ(x)).

Then from Corollary 6, we have
√
w = xµ(x). Let Z be a language which commutes with Y . Suppose the shortest word in

Z , say v, is strictly shorter than
√
w. Let |v| = `′. Then Z`′Yn = YnZ`′ , i.e., Z`′w = wZ`′ . Lemma 23 results in |Z`′ | = 1. Let

Z`′ = {v}. Now we have vw = wv. This implies that
√
v =
√
w, which contradicts the fact that |v| < |

√
w| and v 6= λ. �

6. Conclusion

This paper generalizes the notion of f -symmetric words to an arbitrary mapping f . For an involution ι, we propose the
notion of the ι-twin-roots of an ι-symmetric word, show their uniqueness, and the fact that the catenation of the ι-twin-
roots of a word equals its primitive root. Moreover, for a morphic or antimorphic involution δ, we prove several additional
properties of twin-roots. We use these results tomake steps toward solving pseudo-commutativity equations on languages.
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